$$
\begin{array}{ll}
y=a x+b & 1^{\text {st }} \text { Degree (or Linear) Function } \\
y=a x^{2}+b x+c & 2^{\text {nd }} \text { Degree (or Quadratic) Function } \\
y=a x^{3}+b x^{2}+c x+d & 3^{\text {rd }} \text { Degree (or Cubic) Function } \\
y=a x^{4}+b x^{3}+c x^{2}+d x+e & 4^{\text {th }} \text { Degree Polynomial Function }
\end{array}
$$

in general we have:

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

(this is an nth degree polynomial function)

- A polynomial function of degree n has, at most, $\mathrm{n}-1$ turning points.
- A polynomial function is a smooth, continuous curve....no breaks or sharp corners.

Power Functions (these are the simplest polynomial functions)

$$
\text { (even powers): } \begin{aligned}
& y=x^{2} \\
& y=x^{4} \\
& y=x^{6} \\
& y=x^{8} \\
& \text { etc. } \\
& \text { (odd powers): } \begin{array}{l}
y=x \\
y=x^{3} \\
y=x^{5} \\
y=x^{7} \\
\text { etc. }
\end{array} \text { these all have the " } x^{2} \text { look": }
\end{aligned}
$$

Transformations of basic power functions:
Graph: 1) $y=(x+2)^{3}$
2) $y=(x-1)^{4}+3$
3) $y=x^{5}-2$
4) $y=-(x-3)^{6}+2$

- Polynomial functions in general ($y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$) have the same right and left "end behavior" as their corresponding power functions.
for n even: \quad leading coefficient positive $\Rightarrow \xrightarrow{\text { as } x \rightarrow \infty, y \rightarrow \infty} \begin{aligned} & \text { as } x \rightarrow-\infty, y \rightarrow \infty\end{aligned}$

for n odd: leading coefficient positive $\Rightarrow \simeq \begin{aligned} & \text { as } x \rightarrow \infty, y \rightarrow \infty \\ & \text { as } x \rightarrow-\infty, y \rightarrow-\infty\end{aligned}$

leading coefficient negative \Rightarrow| R | as $x \rightarrow \infty, y \rightarrow-\infty$ |
| :--- | :--- |
| | as $x \rightarrow-\infty, y \rightarrow \infty$ |

- Polynomial functions written in factored form:

If $(x-\mathrm{k})$ is a factor of the function, then k is a zero of the function. ex.: $y=(x-5)(2 x+3)^{2}$ has zeros: 5 and $-3 / 2$

The graph of this function will have x-intercepts at $5 \&-3 / 2$

Factors of "odd multiplicity" (ex. $\left.(x+5)^{3},(2 x-1)^{7}, x, x^{5}\right)$ will cross through the x-axis at that x-intercept.

Factors of "even multiplicity" (ex. $\left.(3 x+2)^{2}, x^{4},(x-7)^{8}\right)$ will just touch the x-axis at that x-intercept.

To get a fairly accurate sketch of a polynomial function that is not a transformation of a basic power function, do the following:
a) Find the x-intercepts of the function by letting $y=0$ and solving for x by factoring (you may also need to use the square root property).
*Note: We will solve higher degree equations that are not factorable in sections 3.3 and 3.4.
b) Determine if you will cross through or just touch the x-axis at the x-intercepts.
c) Find the y-intercept of the function by letting $x=0$ and solving for y.
d) Keeping in mind the right and left end behavior of the function, connect your points with a nice, smooth curve.
e) Don't worry about getting the exact maximum or minimum values of your function. This is just a rough sketch.
f) Verify your graph with your graphing calculator.

Practice Exercises

Sketch the following by hand. Label all x and y-intercepts. Verify each graph with your graphing calculator.

1) $y=x^{3}-5 x^{2}+6 x$
2) $y=(x+2)^{3}(x-1)$
3) $y=x^{4}(x+1)^{2}$
4) $y=-(x-3)(x+1)^{3}$
5) $y=x^{4}-2 x^{3}-8 x^{2}$
6) $y=-x^{3}+x^{2}+12 x$
7) $y=x^{4}+5 x^{3}-x-5$
8) $y=-(x+3)(x+6)(x-4)$
9) $y=(x-1)^{2}(x+3)^{3}$
10) $y=3 x^{3}+2 x^{2}-3 x-2$
